Main Functions

The most important functions to analyze mass spectrometry data with lots of missing values

median_normalization()

Column wise median normalization of the data matrix

proDA()

Main function to fit the probabilistic dropout model

dist_approx(<proDAFit>) dist_approx(<SummarizedExperiment>) dist_approx(<ANY>)

Distance method for 'proDAFit' object

test_diff() result_names(<proDAFit>)

Identify differentially abundant proteins

Accessor methods

Methods to access values of the fit

abundances(<proDAFit>) design(<proDAFit>) hyper_parameters(<proDAFit>) feature_parameters(<proDAFit>) coefficients(<proDAFit>) coefficient_variance_matrices(<proDAFit>) reference_level(<proDAFit>) convergence(<proDAFit>)

Get different features and elements of the 'proDAFit' object

.DollarNames(<proDAFit>) `$`(<proDAFit>) `$<-`(<proDAFit>)

Fluent use of accessor methods

Quick start functions

pd_row_t_test() pd_row_f_test()

Row-wise tests of difference using the probabilistic dropout model

generate_synthetic_data()

Generate a dataset according to the probabilistic dropout model

Low-level statistics functions

pd_lm()

Fit a single linear probabilistic dropout model

invprobit()

Inverse probit function

predict(<proDAFit>)

Predict the parameters or values of additional proteins

Utility function

mply_dbl() msply_dbl()

apply function that always returns a numeric matrix

Class and Package Information

proDAFit-class

proDA Class Definition

proDA_package

proDA: Identify differentially abundant proteins in label-free mass spectrometry

Generic functions

Function definitions for S4 Generics

abundances()

Get the abundance matrix

coefficients()

Get the coefficients

coefficient_variance_matrices()

Get the coefficients

convergence()

Get the convergence information

dist_approx()

Calculate an approximate distance for 'object'

feature_parameters()

Get the feature parameters

hyper_parameters()

Get the hyper parameters

reference_level()

Get the reference level

result_names()

Get the result_names

All functions

abundances()

Get the abundance matrix

abundances(<proDAFit>) design(<proDAFit>) hyper_parameters(<proDAFit>) feature_parameters(<proDAFit>) coefficients(<proDAFit>) coefficient_variance_matrices(<proDAFit>) reference_level(<proDAFit>) convergence(<proDAFit>)

Get different features and elements of the 'proDAFit' object

.DollarNames(<proDAFit>) `$`(<proDAFit>) `$<-`(<proDAFit>)

Fluent use of accessor methods

coefficients()

Get the coefficients

coefficient_variance_matrices()

Get the coefficients

convergence()

Get the convergence information

dist_approx(<proDAFit>) dist_approx(<SummarizedExperiment>) dist_approx(<ANY>)

Distance method for 'proDAFit' object

dist_approx()

Calculate an approximate distance for 'object'

feature_parameters()

Get the feature parameters

generate_synthetic_data()

Generate a dataset according to the probabilistic dropout model

hyper_parameters()

Get the hyper parameters

invprobit()

Inverse probit function

median_normalization()

Column wise median normalization of the data matrix

mply_dbl() msply_dbl()

apply function that always returns a numeric matrix

pd_lm()

Fit a single linear probabilistic dropout model

pd_row_t_test() pd_row_f_test()

Row-wise tests of difference using the probabilistic dropout model

predict(<proDAFit>)

Predict the parameters or values of additional proteins

proDA()

Main function to fit the probabilistic dropout model

proDAFit-class

proDA Class Definition

proDA_package

proDA: Identify differentially abundant proteins in label-free mass spectrometry

reference_level()

Get the reference level

test_diff() result_names(<proDAFit>)

Identify differentially abundant proteins