Get the coefficients

coefficient_variance_matrices(object, ...)

Arguments

object

the object to get from

...

additional arguments used by the concrete implementation

Value

a list with as many entries as rows in the data. Each element is a p*p matrix

See also

accessor_methods for the implementation for a 'proDAFit' object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10) fit <- proDA(syn_data$Y, design = syn_data$groups) coefficient_variance_matrices(fit)
#> [[1]] #> Condition_1 Condition_2 #> Condition_1 0.002859237 0.000000000 #> Condition_2 0.000000000 0.002859642 #> #> [[2]] #> Condition_1 Condition_2 #> Condition_1 0.02704272 0.000000000 #> Condition_2 0.00000000 0.009472642 #> #> [[3]] #> Condition_1 Condition_2 #> Condition_1 0.01444376 0.00000000 #> Condition_2 0.00000000 0.01444404 #> #> [[4]] #> Condition_1 Condition_2 #> Condition_1 0.08874854 0.00000000 #> Condition_2 0.00000000 0.06406862 #> #> [[5]] #> Condition_1 Condition_2 #> Condition_1 0.01407351 0.000000000 #> Condition_2 0.00000000 0.009478986 #> #> [[6]] #> Condition_1 Condition_2 #> Condition_1 0.003931589 0.000000000 #> Condition_2 0.000000000 0.003930584 #> #> [[7]] #> Condition_1 Condition_2 #> Condition_1 0.003437091 0.000000000 #> Condition_2 0.000000000 0.003436644 #> #> [[8]] #> Condition_1 Condition_2 #> Condition_1 0.07466749 0.00000000 #> Condition_2 0.00000000 0.07687061 #> #> [[9]] #> Condition_1 Condition_2 #> Condition_1 0.01508273 0.000000000 #> Condition_2 0.00000000 0.007553562 #> #> [[10]] #> Condition_1 Condition_2 #> Condition_1 0.00425475 0.000000000 #> Condition_2 0.00000000 0.004255852 #>